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Summary

The present paper contains the model description for developing the damage parame-
ters under the conditions of high rates of loading in impact experiments (Chapter 5).
The worked out methodology is illustrated on an example of processing the experimental
results and spallation of organic materials to develop the critical dissipation energy (Chap-
ter 6). The results of the present investigations show that the dynamical wave pattern
generated as a result of impact in the samples depends strongly on the damage parame-
ters. Thus the enthropy growth factors for the shear and tension as well as the breakup
criterion - the critical value for the dissipation - could be developed. Those damage
parameters for the organic glasses were developed based on an impact experiment.
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Chapter 5.
Developing the damage parameters in experiments
on impact loading of flat plates.

The experiments on twisting and tension of turbular samples, described in the previous
report enable to determine the damage parameters for materials but do not allow to evaluate
with a satisfactory accuracy the critical value of dissipation D,, being the main breakup
criterion. The results of numerical investigations show that on approaching the breakup
conditions strains and dissipation start growing very rapidly, that does not allow to determine
D, with a necessary accuracy. Thus the experiments on high rates of loading could be used to
evaluate the critical damage parameters wherein the multiple waves reflections in the sample
and formation of spallation free surfaces make it possible to detect the critical parameters with
a greater precision.

The present chapter describes experimental and theoretical aspects of the problem of
dynamical deforming and fracture of flat plates in a hypervelocity impact of a thin plate or in
dynamical loading by exploding a high explosive charge. As it will be seen, the experimental
methodic, allowing to determine the critical damage parameters with a higher accuracy is
much more complicated itself as well. The main goal of those experiments is to initiate a
strong shock wave in the sample with a sufficiently high amplitude the structural changes
(accumulation of damages) to take place. Then tracking the wave and its reflections enables to
retrieve the information on the depth of structural changes in the material.

5.1. Experiments on flat plates collisions and loading of plates in
explosions.

A simplest method to initiate in a plate a strong shock wave with an amplitude 10-
100 'GPa is to perform an explosion of a high explosive on the surface of the plate [1]. The
application of explosive lenses guarantees the formation of flat detonation waves loading
samples. But it is very difficult to achieve a uniform distribution of parameters behind the
wave in a radial direction. The pressure drops down behind the detonation wave very rapidly
that makes precise measurements very complicated.

To avoid those difficulties different devices for loading materials were developed based on
plate's loading in collision with an impactor-plate moving at a high velocity. Under the
present experimental conditions a plane shock wave is initiated in the plate with the
parameters behind the wave sustained constant during the time interval necessary for the
reflected shock wave to circulate in the impactor-plate. The relatively large transverse length-
scales for the sample-plate and the impactor-plate ensure a one-dimensional flow during the
time interval necessary to perform measurements. Acceleration of the impactor-plates could
be performed in explosions of high explosives or in pneumatic or powder guns.



Fig. 1, illustrates the scheme of the most widely spread device accelerating impactors in a
reflected detonation wave (L.V. Altshuller, GI. Kanel et al., [1]). The device makes it possib-
le to accelerate metallic or plastic impactors 1-IO0mm thick up to velocities of 1-60km/s. The
impactor preserves the flat shape despite the fact that the radial expansion of detonation
products lowers down the pressure in the peripheral zones much faster than in the center of
the impactor. The compensation of the momentum in the peripheral zones of the impactor is
achieved by using a focusing ring bringing to an increase of pressure in the peripheral zones
due to detonation products in flow into the cavity bounded in the periphery by the focusing
ring.

24
54

Fig. 1. The scheme of a hypervelocity accelerator of flat impactor-plates
1 - plane detonation wave generating lens; 2 - high explosive charge; 3 - impactor-plate to be

accelerated; 4 - steef focusing ring; 5 - air-filled cavity.

In direct acceleration of a plate by expanding detonation products it is difficult to get final
velocity less than 1 km/s. To lower down the impactor-plate velocity the damping plates are
used (Fig. 2) possessing higher dynamic strength than impactors: p 2a2 > ,Pa3 (p - density,
a - sonic velocity). The scheme of such a device is given in Fig. 2. The explosive lens 1
generates a flat shock wave in the damping plate 2. Owing to the differences in dynamic
strengths of the materials of damping-(2) and impactor-(3) plates the last achieves in
reflection of the shock wave from the free surface the velocity higher than that achieved by
the damping plate and separates from it in a free flight. The softening polyethylene plate 4
serves to prevent from the impactor plate from spallation. The devices shown in Fig. 2 are
attractive as they could be used for acceleration of very thin impactors: foils or films.

2
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Fig. 2. The scheme of a low-velocity accelerator of flat impactor-plates

1 - explosive lens; 2 - damping plate; 3 - impactor plate to be accelerated;
4 - amortizator.



The explosive lenses (Figs. 1 and 2) are rather convenient accelerators making it possible
to control amplitudes and duration of dynamical loadings in a rather wide range. Nevertheless
the best controllable conditions for measurements are still provided by pneumatic or powder
guns. The more precise impact velocity control and the highest level of uniformity of the zone
of one-dimensional deforming could be achieved using the pneumatic accelerators.

To investigate the mechanical properties of shock-waves loading pneumatic 50-150 mm
guns are normally used (G.V. Stepanov et al., [1]). The length of the gun up to 14 m and the
initial pressure of gas (N2 or He) in the chamber up to 150 Bar the impact velocities could be
varied from 20 m/s up to 1500 m/s. Using the multi-stage light-gas guns could increase the
impact velocities up to 8 km/s.

To register the structure of compression waves induced in the sample-plate on colliding the
impactor a series of methods was developed for continuous registration of high frequency
tensions and velocities variations in the internal sections of the sample and on the contact and
free surfaces.

The basic method for registration of tensions in the internal crossections of samples is the
method of manganine ganges first applied by P.W. Bridgeman [] for static conditions and then
generalized for the dynamic loadings (K.I. Baryshev, GI. Kanel et al., [1]). The use on
manganine ganges is based on the relatively high sensitivity of the material electric
conductivity to pressure variations, and relatively low sensitivity of the electric conductivity
to temperature variations. To register pressures in plane waves the sensitive element of the
gange in the form of an arch 10-30 mm thick covering an area of 0.1-1 sm2 is used. The
gange is placed between the plates forming the sample separated on both sides by thin films
(Fig. 3). The electric current through the gange makes it possible to register the power drop
variations in the gange caused by pressure variations. To improve the quality of the electric
signal normally the induction sources of current are used providing 5-10 A during the time
interval of -100 ms. The gange is connected as one of the components of the resistance bridge
or some other differential registration schemes are used to exclude the constant signal
determined by the initial resistance of the gange thus increasing the accuracy of
measurements.

3 4

Fig. 3. The scheme of a manganmie pressure gange installation in a sample
1 - the sensitive element of a gange; 2 - the contacts of the sensitive elements; 3 - the two pieces

of a sample-plate; 4 - isolating films.

The peculiarities of the calibration of the pressure ganges are described in details in [1].
Contrary to pressure measurements the velocity measurements in shock waves are based

on the fundamental physical laws and do not need development of any complete calibration
diagrams. The methods could be considered the primary ones from the metrological point of
view, thus one should a higher precision using these methods.
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To perform a continuous registration of the dynamics of a free surface of a metallic sample
the method of measures condensator is used (A.I. Ivanov, S.A. Novikov, [1]). An example of
the experiment using the measuring condensator to determine the velocity profile of the free
surface of the sample is given in Fig. 4. A flat electrode 7 is located at a given distance x,
from the free surface of the sample 5. The electrode and the sample form the measuring
condensator (Cm). The electric power is supplied by the source E (big condensator) via
resistors R1j. The resistance of Rj, is chosen rather small to provide a small characteristic time
- =/A,. Cm much less than the time of registration. The protective ring 6 is destined to

maintain the uniformity of the measuring electrode 7.

2

4

6 7 6--- E

Fig. 4. The scheme of experimental registration of the free surface velocity of a sample-plate in
impact loading

1 -the high explosive lens; 2 - damping plate; 3 - the impactor plate; 4 - amortization layer; 5 -
the sample-plate (metallic); 6 - the ring; 7 - the measuring electrode; E - the power source;

R = A,, - resistors.

After the free surface of the sample comes to motion the volume of the measuring
condensator begins to decrease inducing a current in the electrical chain. The electrical
current is proportional to the velocity of the measuring condensator volume variations, i.e. to
the velocity of the sample free surface motion:

i(t)=udCm= _ 4U w(t); Wt)=dr (1.1)
dt 4;IXE2(t) dt

where U is the power of the electric source, e is the dielectrical permeability, A - the area of
the measuring electrode, x(t) - the variable distance between the sample-plate and the
electrode. The x(t) function could be determined on integrating the equation

dc _ 4ni(t) x (t); x(O)= Xo (1.2)

dt &AU

using the experimentally measured electrical current variations i(t).
The present method is a non-intrusive one. Thus its resolution is limited only by the time

shift of the pressure wave coming to the free surface area controlled by the electrode.



To ragister the mass velocities profiles in dielectrical materials the magnetoelectrical
method is used (L.V. Altshuller, A.N. Dremin et al., [1]). A H-shaped gange made of thin
aluminum foil is incorporated into the sample for the purpose (Fig. 5). The experimental
installation is placed in a uniform constant magnetic field so that the sensitive element of the
gange (2) is orthogonal to the magnetic lines and parallel to the shock wave plane. On loading
the sample the gange is set into motion with the velocity v(t), and the electric power could be
registered on its contacts (3) induced by compression of the magnetic field entrapped by the
H-shaped gange:

U(t) = -v(t). B. 1, (1.3)

where I is the length of the sensitive element; B - the magnetic induction of the field.
The spatial resolution of the methods for registration of wave profiles by manganine

ganges, measuring condensators and magnethoelectric ganges is limited by the characteristic
size of the sensitive element of each gange. In the best case the resolution could be several
mm in the plane of the shock wave.

Fig. 5. Registration of a mass velocity variations in the sample using the magnethoelectric method
1 - the sample-plate; 2 - the sensitive foil element; 3 - the conducting contacts of the foil element;

fl - the magnetic field; short arrows show the direction of the impact compression.

The registration of wave profiles is normally performed by the ray of an oscillograph. Thus
the accuracy of registration of current parameters of the material is limited by the accuracy of
amplitude measurements of the registration apparatus.

Much higher accuracy of measurements and higher spatial and temporal resolution could
be reached using the laser methods for free and contact surfaces motion registration [1].

The lasers application for velocity measurements in experiments with shock waves is based
on the Doppler effect. For reflecting free surface velocity -10-1000 m/s the effect is
relatively small (the wave lengths variations is about 10-3 - 10-2 A). Thus to register the effect
two-rays or multi-rays interferometers are used. The measurement then have a differential
character that essentially increases the accuracy. The high spatial resolution of the laser
methods is due to the fact that the radiation could be focused on a sample in a small spot
-0.1 mm in diameter.
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Fig. 6. Free surface velocity registration using laser doppler interferometer
1 - the impactor plate; 2 - the sample plate; 3 - the inlet telescope; 4 - light separator; 5 -

polarizer, orientation 450; 6 - glass lense; 7 - light intensity control registrator; 8 - emitted light
registrator.

Fig. 6 shows the scheme of the laser doppler velocity measurements. The application of the
method is based on registration of periodical temporal variations of the light intensity in
interferention of the two beams of a coherent light with different wave lengths. For the
present case the interferention of the light beams reflected from the free surface at different
times takes place, For continuously varying velocity of the reflecting surface the Doppler
effect for the two beams would be different due to the time shift. The periodical temporal
variations of the light intensity registered by the two-rays interferometers have the frequency
proportional to the acceleration of the reflecting plate and the relative time shift. A more
detailed description of the method could be found in [1].

Thus the modern physics of hypervelocity loadings has a wide spectrum of methods for
measurements of kinematic characteristics under high pressure short term loading. Along with
the discussed methods the pressure profiles registrations by dielectrical and piesoelectrical
ganges are used, as well as photochronography methods of the free surface velocity
measurements. Laser diagnostics provides the highest accuracy and resolution of the
measurements. Nevertheless, more simple methods of registration are effective as well being
applied for some particular problems. For example, measuring condensators provide accurate
and easily processible data in experiments on spallation and in experiments aimed at
determining the dynamic elasticity limits for metals. Manganine and magnethoelectrical
ganges provide the possibility of receiving information from internal layers of samples, that is
of importance for many practical issues.

To develop new model parameters for materials using the techniques described above it is
necessary to pose and solve theoretically the problem of dynamical behavior of a sample plate
under the given loading conditions and by varying the model parameters math the results of
dynamical experiments.

5.2. Mathematical statement of the problem.
Regard the problem of hypervelocity deforming and fracture of a flat sample-plate in

impact of a flat impactor-plate at a relative velocity Vo. One phase materials will be registered
to begin with.

The transverse size of the plates being much larger then the thickness and the characteristic
time of the process being relatively small (several reflections of the elastic wave from free
surfaces of the sample plate), the problem could be regarded within the flames of one-
dimensional approximation (axially deformed state) and adiabatic approximation (div 4 = 0;
S- the heat flux vector). Under the assumptions the mass, momentum and energy equations



take the following form in a coordinate system (x,y,z) with x-axis orthogonal to free surfaces
of plates [2, 3]:

-- = -r, 6ox - (2.1)

(2.2)

pT + (Adr ) - 2 + Ad2; (2.3)
3pzr

where p - density of the material; v = vx - velocity; x = - the strain rate being the sum

of elastic and viscous components: . = e + <•; acr , ac, == cry=Y = a, - stress tensor

components; T - absolute temperature (T = T, in the initial state); r7 - specific entropy (per

mass unit); p - shear modulus; zr - the relaxation time for the viscoelastic media of a
Maxwell type; co,a - damage parameters for the material (for damages in tension CO and
damages in shear a) [4].

The temperature Tin (2.3) can be determined by the following formula:

T=T1- vx + ' (2.4)

2
where K = 2 +p-,/ -the volume modulus (2 - Lamet coefficient); C, - heat capacity of the

material under constant deformations; av - volume expansion coefficient for the material.
The governing system of state equations for damageable homogeneous thermoviscoelastic

media have the following form [4]:

SAex+2,• -Ka Toq+Anln(l-co)+ i-AC ln(l-a), signcr• ~C J3 1e -2s -co

K 2 AC

a, =aý Ae+2p8 Ka - Tori7+2AQln(l-o)) • C _ln(l-a).sign
C, 31I-co

CF. =Cry = -+61t-y' 7 C, .

3,u-r 6a-

(2.5)

•e . v. .e *e a~x-aci. =x-8 8=8 - x y
X , ' Y

1o
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f2 1-o --" 1_-

Here A, Q, -, A,C, , - material constants related to damage parameters co and a

respectively; H(x) = {1 for x >0; 0 for x< •0} - the Heavyside function.

The breakup criterion (the spallation formation criterion for the present case) is that of
critical specific dissipation, i.e. the specific dissipation of material should not exceed the
critical value D. [2, 3[:

fl.(r- +Acb' + Ad)2  dt < D. (2.6)

Here t, - the breakup time, D, - the damage constant of critical dissipation.

Initial conditions are the following:
a) for the impactor-plate

0

V=Vo, p= po,, - =0, T= T, r=0, a=ow=O0,(-h:x<0);

b) for the sample-plate
o

v=0, P=Po2 , P-A =0, T= T, r/0, a=co=0,(O<x<H),
0

where x = xlt=0 - lagrangian coordinate; h, H - thicknesses of the impactor and the target

respectively (Fig. 7).

-h 0 H
X

V.

Fig. 7. Initial conditions for the impact problem
0

The boundary conditions on the contact surface x = 0 are the following:
a) for the case of compression (o-, < 0)

V , x

b) for the opposite case a free surface condition should be used
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-x = 0.

The boundary conditions on the spallation breakup surfaces that could be formed in
different crossections of the target are similar to free surface conditions. The spallation
surfaces should be introduced into the solution in the crossections where the breakup criterion
(4.6) was satisfied.

0 0

The boundary conditions on free surfaces x = -h and x = H are:

rx = 0.

Now regard the problem of deforming and spallation breakup of a plate in its loading by
the detonation products of a high explosive layer hE thick put in contact with the plate.

The equations (2.1) - (2.5) describe the dynamical processes inside the plate. The equation
0

(2.6) gives the breakup criterion. The boundary condition for the free surface x = H is similar
to that for impact loading:

O-x = 0.

The boundary condition on the surface contacting the high explosive has the following
form:

x -0 =-P(t),

where P(t) is the pressure of the detonation products at the interface.
0

It is assumed that the outset of the plane detonation wave takes place at x = -hE, and by
0

the time t = 0 the detonation wave approaches the front surface of the plate (x = 0), and the
plate at t = 0 is not deformed and/or stressed.

Assuming that the equation of state for the detonation products is

p=Gp3 ,

and neglecting the transverse expansion of the products one can obtain an exact formula for
the pressure variation on a moving front interface of the plate [5]:

16 Pu2 hE 1 dw (2.7)P~)=27 PED 1 + UDt. UD dt
hE J

where UD is the velocity of the detonation wave, PE - the density of the charge, w - the

displacement of the front surface of the plate (x = 0).

5.3. A short note on the numerical solution.
The described above problems were solved numerically in lagrangian coordinate system

deforming and moving with the media. The explicit finite-difference scheme of the second
order of accuracy of the Wilkins type was used [6, 7]. The eulerian coordinates xi and

f2



0

velocities vi were determined in the grid nodes xi. The other parameters: strain rates (- )oi+,

deformations (sx).+ ,, densities p,+,, masses of cells p,+, =P.1 2(x+1-x 1), stresses

(osx).+¼, etc. - were determined in the centers of cells.

To guarantee the stability of the calculations the time step was chosen based on the
Courant criterion

At 0.25
At= m a -2 + vi +Ivi-•I}

[ xi -- Xi-1

The negative stresses on the contact surfaces were determined using the condition of the
equality of velocities. For all the other cases the velocities on both sides of the contact surface
were determined using the condition a,, = 0.

A special mechanism to distinguish the surfaces of spallation breakup was developed. In
case the dissipation D determined by formula (2.6) surpassed the critical value (D > D.), a

spallation surface was assumed to have been formed within the cell xi < x < xi+,. Then the
grid was rearranged in the vicinity of the spallation surface so that the nearest nodes were
placed to the surface from the both sides to form a contact surface. The following formulas
were used to recalculate the parameters

1 0 o 1
i x "(x i ); I + +--- vi+1  ' (Vi + i+)

22

Thus a new cell of a zero mass was formed:

(6U)A+Yý f5+Y1 =II52 =tY 1 = '+Y2 = 0

The mass of the neighboring cells increased:

I I
A ( -L 1 - P ,Y 2 '

-YJ = Y2 /+2 Y2 Y22 +

The other parameters of the neighboring cells were determined by formulas:

0 -2 - - 2
P'i 2  _ ' P1+Y2 - (ii+2 x5 1)

-1 f12A_ p.1 ) + ( ' +f Aq,.')
f ' -Y('2 2 2 (f 2(P+Y 2

Y2 9,1; fI+ Y2
PY2 0'Y2

f = f (q, a, (o, D,T, , v,).

The elastic energy in the neighboring cells decreases being spent for the breach formation.



Numerical solution of the problem of the impact loading and spallation formation makes it
possible to determine theoretically velocity variation of the free surface of the sample plate,
depending on values of the material constants. Comparison of the obtained theoretical curves
with experimental results will enable to develop the model parameters. The time and place of
spallation formation can be easily detected from experiments thus providing sufficient data to
develop the critical dissipation parameter D.. Some other material constants could be easily
developed or verified in dynamic experiments as well. The next chapter will give an example
of developing the damage parameters for organic materials and comparing the results with the
impact experiment.
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Chapter 6

Estimation of the damage
parameters based on an experiment

This chapter describes an estimation of damage parameters (shear and volumetric kinetic
and enthropy factors, [1-5]) based on an experiment of high-velocity flat collision of sam-
ples made of plexiglass. The output of the experiment is the velocity of the opposite side
of the target per time. The projectile's length is less than the target's; both samples are
made of the same material. The width of the samples is much larger than their length so
the interaction of the samples is assumed to be flat.

The background of the experiment [6] used in our estimation is the following. The colli-
sion process is being developed in microseconds; it begins with the contact of a projectile
moving at a high velocity VO with a stalling target. A compressive wave is originated;
it propagates in both directions producing deformations higher than the elasticity limit.
When the wave reaches the opposite side of the target, it starts to move in the direction
of the initial velocity Vo. Then the stretching wave originated on the open side of the
projectile reaches the open side of the target and the velocity decreases. If this wave has a
high amplitude, its reflection from the open side of the target will bring to the beginning
of the destruction growth nearby. This process finally brings to separation of a "plate"
from the open side of the target. In case of the same materials both of the projectile and
the target the size of the plate is close to the size of the projectile. The plate separated
moves with the velocity less than initial VO in the direction of the projectile before col-
lision. The velocity of the oposite end of the target as well as the velocity of the plate
separated is recorded with rather high frequency and accuracy in time.

To estimate the damage parameters we make the following job. We build the math-
ematical and numerical model for 1D motion of visco-elastic samples which is extended
to account the influence of the damages accumulation. This model is described in our
previous reports; we have only two types of damage parameters here because the material
is uniform. The elastic parameters of the materials, sizes of the samples and the collision
velocity VO are assumed to be known a priori. Varying the damage parameters (essentially
the enthropy and kinetic factors) and processing the numerical calculations we observed
that one of the main parameters gained both from the experimental output and the nu-
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merical calculations - the maximal velocity of the target's opposite end V,, - depends
essentially on a complex combined of the enthropy and the kinetic factors for the shear
damage (A and C in our notation). In the conditions of the experiment when the critical
deformations are exceeded almost everywhere in the collision process and the duration of
the process is several orders less than the relaxation time, the value of V,, is practically
independend of other parameters including the enthropy and the kinetic factors for the
volumetric damage (A and fQ in our notation, correspondingly). The first stage of the
work was to obtain the value of this complex.

The other damage parameters, mainly the kinetic and enthropy factors of the volumetric
damage, regulate another significant parameter obtained both in the experiments and the
calculations - final velocity of the plate separated. The shape of the velocity per time
curve before separation is regulated with kinetic factors of both shear and volumetric
damage parameters. So all the most difficult to measure damage parameters - the kinetic
and enthropy factors - could be estimated with such an experiment.

The value of critical dissipation D. regulates the time of the breakup and spallation
formation, detected on the diagrams, and the final velocity V1 . Thus the value of the
critical dissipation D. for the material could be developed based on the experimentally
measured values of the breakup time and final velocity of the spallation plate.

6.1 The parameters used in calculations and in the
experiment

The known parameters of the experimental setup [6] sufficient for our investigations are
enlisted in the Table 6.1. All the dimensional units are presented in the SI system of
measurements.

Parameter Magnitude Unit Description
Kinematic setup parameters

H 11.7 mm Length of the target
h 1.4 mm Length of the projectile

V0 800 m/s Velocity of collisionMaterial (plexiglass) properties

PO 1180 kg/m 3  Density
P 1.33 GPa Shear elastic module
K 6.08 GPa Volumetric elastic module
a, 2.2.10-4 K- 1  Thermic expansion factor
Cr 1350 J/(kg.K) Specific heat capacity

_ 1000 s Relaxation time
Table 6.1. Parameters of the experimental setup.

Some remarks must be put for the contents of the Table 6.1. First, the width of the
samples (both the projectile and the target) was about 70 mm; it is much higher than
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the length of each part of the system so its value is essential to choose 1D model of the
process but is not used once the 1D model is chosen. The second remark is about the
relaxation time r. Its physical meaning is the duration of the period when the stresses in a
visco-elastic material being strained decrease in e ; 2.87 times. If one can imagine a solid
body, the stresses in it release within a significant period of time even the body is very
soft. But the whole process of collision takes micro-seconds. If the relaxation time value
affects the process of collision it must be also of the order of micro-seconds. It means that
the effective dynamic viscosity of such a material must be 77 = pLr 103Pa-s - this can

not be a solid body but a viscous liquid. So we choose a magnitude of the relaxation time
several orders higher than this value, and then it can not affect a short-term process at all
independently of its actual value. This consideration helps us to eliminate the influence
of the relaxation time (which actual value is not known from the experiments) on the
collision effects.

The critical deformations e. and 4* which regulate the process of volumetric and shear
damages accumulation correspondingly can be estimated roughly to be equal to:

Parameter Magnitude Description
Estimates of critical deformations

0.03 Critical volumetric deformation
E* 0.015 Critical shear deformation
Table 6.2. Estimates of the critical deformations.

Even the magnitudes of e. and e* affect the damage accumulation process sufficiently
but within the conditions of the experiment when a high-velocity interaction of the samples
takes place both estimates of the critical values of deformation are exceeed. They are
exceeded considerably (several times) in the compression and decompression waves passing
along the samples. Therefore their actual values are of little influence on the process; one
thing is very essential only - that the volumetric damages are accumulated only in the
stretched but not in the compressed state of the material and the shear stresses are
accumulated every time when the corresponding deformation exceeds the limit.

The set of completely unknown damage parameters looks like follows:

Parameter Unit Description
Unknown damage parameters to be estimated
02 s-1 Volumetric damage kinetic factor

A Pa-s Volumetric damage enthropy factor
C s-1 Shear damage kinetic factor
A Pa.s Shear damage enthropy factor
D. J/kg Critical specific dissipation energy
Table 6.3. List of unknown damage parameters.

One of the main goals of the present investigation is to obtain the estimates of the
parameters enlisted in the Table 6.3 on the base of the experimental data published in
[6].
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6.2 Calculations of the collision process: dynamics

of parameters

The first set of calculations is made to present the dynamics of the parameters in the
process of two samples collision when all the damage parameters accumulation is ignored
(the kinetic factors are set to be zero). Really we obtain almost elastic behavior because
the relaxation time is much higher than the durarion of the process. The second set com-
pared to the first one is calculated with non-zero damage parameters. All the parameters
values except for those enlisted in the Table 6.3 are taken from the Tabs. 6.1-6.2. The
process is traced either until a plate separates from the target due to damage or until the
decompression wave passes half-way from the opposite (to the collision) side of the target
in the direction oriented to the projectile.

6.2.1 The visco-elastic behavior

The figures Fig. 6.1-4 show the development of velocity, deformation, stress and temper-
ature growth versus lagrangian coordinate X for the time moments:

t = 0.36(a), 1.02(b), 3.31(c), 5.50(d), 6.38(e), 8.06(f)pss.

Each moment is chosen to describe different stages of the process; curves relating to each
one are denoted with underlined letters from a to f as it is shown above. The direction of
waves propagation is denoted with arrows.

The Fig. 6.1 shows the development of velocity. At t = 0.36ps (curve a) the collision of
the projectile (moving at Vo=800m/s) and the target (Om/s) brings to origination of two
waves, propagating to the left (into the projectile) and to the right (into the target). The
resulting velocity between two waves is two times less than VO. At t = 1.02pis (curve b) the
wave which was moving to the left has already reflected from the edge of the projectile and
propagates to the right behind the leading wave propagating in the target. The velocity
changes from Vo/2=400m/s to Om/s in the rear wave. The whole complex then consists
of two waves (compression then decompression, see below); the distance between them is
approximately the doubled projectile size (since the material is the same). At t = 3.31pis
(curve c) the complex of two waves propagates within the target towards its right edge.
At t = 5.50jis (curve d) the leading wave is reflected from the edge of the target; the
velocity on the right edge rises up to Vo=800m/s. At t = 6.38jis (curve e) the second
(rear) wave reflects from the edge; the velocity on the open edge begins to fall down. The
leading wave is propagating to the left within the target. At t = 8.06ps the complex of the
leading and the rear waves is propagating within the target to its left edge; the velocity
between the waves rises to Vo/2=400m/s and then falls to zero.

The Fig. 6.2 shows the stress component a,,, distribution evolution in time. The charac-
ter of waves is clearly seen from this figure. The initial impact generates two compressive
waves (curve a, t = 0.361Ls) - they are loading the samples up to 1.1GPa. The negative
value of ur, indicates the compressive state of material between the waves. After the wave
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propagating towards the edge of the projectile reflects, it changes to be a decompression
wave (curve b, t = 1.02pis) but the material of the projectile is never decompressed to

the stretched state during this stage of the process; the stresses magnitude drops to zero
behind the rear (reflected) wave. The curve c (time moment t = 3.31ys) shows the wave
complex (compression plus decompression) propagating towards the right edge of the tar-
get. At the time moment t = 5.50tss the leading wave has already reflected from the edge
of the target opposite to the impact site; it has changed its character to decompression
state and is on its way to collide with the rear wave (which is also decompressive). The
collision takes place in the point inside the target; the distance from this point to the

right edge of the target equals to the size of the projectile. The result of collision is shown
on the curve e (time t = 6.38/zs): the compressed state of the material changed to the
stretched state (loading up to 1.1GPa); the leading wave decompresses the material; the
rear wave compresses it back. At t = 8.06ps the complex of the leading (decompressive)
and the rear (compressive) wave is propagating within the target towards the initial im-
pact site. The stress ar,, first rises up to 1.1GPa (positive value means stretching loading),
then drops to zero in the rear compressive wave.

The Fig. 6.3 traces the deformation • distribution along the lagrangian coordinate X
for the same time moments. It is clearly seen that the behavior of deformation copies
the behavior of the stress (Fig. 6.2); this is an expected behavior because the material
is practically elastic in this set of calculations and the deformation is proportional to
the stress. The maximal deformation module is about 0.17 - this is a very high value
exceeding the estimations of the critical deformations -. and E* several times.

The Fig. 6.4 shows the temperature growth T - To in the material of the target and
the projectile. As it is expected from nearly elastic behavior, the temperature traces the
stress and the deformation, but the sign of the temperature growth is opposite to the
sign of the stress . The maximal temperature change is about 40 degrees Kelvin (total
amplitude 80K).

The Fig. 6.5 shows the velocity V,(t) of the target edge opposite to the impact site per
time. It is seen from this figure that the first - 5pss the velocity is equal to zero (the
waves generated by the impact have not reached the edge). Then the velocity rises up

to V.. = VO=800m/s and remains high until the rear wave reflects from the edge of the
target at t - 6.5iis. Then it falls down to zero.
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6.2.2 The behavior of damageable material

To investigate the difference between damageable and visco-elastic behavior of the plex-
iglass material, the set of calculation analoguous to the previous set for the visco-elastic
case was processed. The values of damage parameters enlisted in the Table 6.3 were the
following:

Q =5.103, C=5.103 , A=107 , A=107 , D.= 106.

All the units of measurement for the parameters above are taken from the Table 6.3.
The value of the critical specific dissipation D. is taken rather high in order to avoid
premature breakup taking into account that this set of calculations is processed just to
illustrate the new features in the materials behavior arising with the introduction of the
damages accumulation model.

The results of calculations are shown in the figures 6.6-13; different curves on the figures
6.6-12 correspond to the following time moments:

t = 0.33(a), 1.44(b), 4.07(c), 5.48(d), 6.37(e), 8.23(f)fis.

The Fig. 6.6 illustrates the development of velocity. The similar wave picture remains for
the damageable case, especially at the beginning (curve a, t = 0.33/.s), but then it can be
seen (curve b, t = 1.441Ls) that after reflection from the projectile edge the velocity behind
the rear wave of the complex does not fall to zero. It is small but positive (aligned with
the initial velocity of the projectile) due to dissipation. The velocity behind the leading
compressive wave grows less than in the visco-elastic case. The curve c (t = 4.07pis) shows
the wave complex moving within the target to its edge opposite to the impact site; one can
see that the plateau between the compressive and decompressive waves is not so high as
in the visco-elastic case; it gradually decreases while the wave complex propagates. The
curve d (t = 5.48jss) shows the distribution of velocity when the leading wave has already
reflected from the edge of the target; the velocity on this edge is less than V0 and equals
to ;600m/s. When moving backwards, the leading wave (now decompressive) splits into
a leading foreshock (with not a very high amplitude) and a decompressive shock (curves
e and f) moving at a lower speed. That shock is similar to a Rakhmatulin decompressive
shock but for damageable materials. The compressive wave following decompression does
not bring the velocity to zero but to the velocity of about 100m/s directed aligned with
the initial impact.

The Fig. 6.7 shows the distribution of stress a2*. After the initial shock the compression
rises up to 1.1GPa as in the visco-elastic case (curve a), but then the plateau between
the compressive (leading) and the decompressive (rear) waves starts to decrease gradually
(curves b and c). For example, the curve c shows that after the initial compression the
magnitude of stress rises to P0.8GPa (t = 4.07iss) and then it falls back to zero in the
rear (decompressive) wave. After the wave complex reflects from the edge of the target
(curves d,e) it consists of three waves; the wave pattern originated after the reflection
is clearly seen on the curve f, t = 8.23jss when it propagates deeply within the target.
The first decompressive foreshock is not big; it propagates with the velocity of the elastic
wave. The magnitude of decompression after the foreshock is about ,0.06GPa. Then a
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strong decompressive shock increases the stress magnitude up to 0.5GPa (this magnitude
gradually decreases in time). Then passes the rear (compressive) wave, but now it change
the stress not to zero but to a slightly compressed state (-0.03GPa). One can see that the
wave development differ essentially from the visco-elastic case (Fig. 6.2), especially after
the wave complex reflects from the edge of the target.

The Fig. 6.8 illustrates the development of longitudinal deformation c*. The devel-
opment of deformation differs in this case both from the development of deformation in
the visco-elastic case (Fig. 6.3) and from the development of stress (Fig. 6.7) in the dam-
ageable case. The two compressive waves originated from the primary impact increase
the deformation up to 0.18 (compressed state). After the left wave reflects from the edge
of the projectile the wave complex originates and begins to propagate towards the right
edge of the target: the leading wave compresses the material to -0.15--0.18, then not
a plateau but slight continuation of the deformation increase takes place (up to -0.16--
0.18, see curves b and c), then the decompression wave decreases the compressed state to
-- 0.03, not to zero. The wave complex reflects from the right edge of the target (between
time moments for the curves d and e), and the following picture is being observed on
the diagrams for the backward motion of the wave complex. The foreshock decreases the
primary compressed state a little (the state remains compressed), then the strong shock
decompresses the material up to 0.11 deformation, then the decompression rises slightly
up to 0.12, then the compression wave decreases the decompressed state to ,0.05, but
then the decompression rises again up to 0.06. In the vicinity of the edge of the target
the decompression decreases to zero.

The Fig. 6.9 illustrates the development of temperature. The compressive waves origi-
nated after the initial impact increase the temperature by +41 degrees Kelvin, but there
is not a plateau between the waves but further increasing of temperature due to dissipa-
tion (curve a). The temperature maximum is at the impact site (+44K), and it continues
to rise until the wave propagating towards the edge of the projectile reflects from it and
passes by the site of impact (curve b). When the wave complex propagates towards the
edge of the target (curves b,c) the leading compression brings to the increase of temper-
ature up to -40K, then the temperature increases gradually to PtZ57K (curve b) + ,Z42K
(curve c), and then it drops back to about +20K. The decompression of the material
arising after the wave complex reflects from the edge of the target brings to decrease of
the temperature below the initial state (curves ef) up to -20K, but it is seen from the
curve f that the final state of the temperature on this stage of the process is still positive
(about +7K). It can be explained by the energy dissipation in the damageable material.

The development of the damage parameter a which is responsible for the shear damage
is shown on the Fig. 6.10. One can see that it begins to rise immideately after the impact
and it's maximum remains at the impact site rising rapidly at first (curves a,b) and then
slowly (curves c-f). The wave complex propagating towards the edge of the target (curves
b,c) brings to rise of the a damage behind the leading wave; the rate of the increase is
not as high as of the stress, deformation or temperature because the damage parameter
is governed by an equation of the kinetic type with characteristic time much slower than
the duration of the process. When the wave complex reflects from the edge of the target

26



(curves e,f) another maximum of damage arises in the vicinity of the edge, which has a
higher value than the maximum at the impact site.

The volumetric damage parameter w development is shown on the Fig. 6.11. It is seen
that it begins to rise only when the state of the material changes to decompression; in
our case it starts when the wave complex reflects from the edge of the target (curves ef).
The damages grow then rather quickly (for the set of parameters used in calculations),
and the maximum of the parameter w is near the edge of the target at the distance equal
to the size of the projectile.

The Fig. 6.12 shows the development of the specific dissipation energy D. Its picture is
very close to the picture of the shear damage a development; the only difference is that
the dissipation almost does not rise at the impact site after the wave complex has passed
it by (curves c-f) and that the growth of dissipation in the vicinity of the target's edge is
higher due to both damage parameters a and w contribution to the energy dissipation.

The Fig. 6.13 show the development of the velocity at the edge of the target opposite to
the impact site versus time. It is seen that the velocity rises up to •600m/s< VO=800m/s,
then stays for about l1s decreasing slightly and then falls to •95m/s. Afterwards it
increases gradually up to 120m/s until we stop following it.
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6.3 Comparison with the experiment and estima-

tions of the damage parameters

The two sets of calculations for visco-elastic and damageable cases illustrated in the
previous section show the difference of the material behavior in both cases and also give
us some considerations for the different parameters influencing various elements of the
experimental curve. In this section we will try to get some estimations of the damage
parameters of the plexiglass that could be processed from the experimental data available
in [6].

The experimentally measured surface velocity variations of the plexiglass target are
shown on the Fig. 6.14. It is seen that velocity reaches its maximum in reflection of
the primary compression wave (Vm). Then it comes to a minimum (Va) in reflection
of the decompressive wave, starts growing up again, but the growth is terminated and
higher frequency oscillations of the velocity with smaller amplitudes indicate the formation
of the spallation plate and multiple reflections of the waves from both free surfaces of
the spallation plate. Thus the time of the breakup can be easily detected from the
diagram 6.14.

6.3.1 The shear damage factors

One of the main conclusions from the previous results is that the maximum of the target's
free surface velocity V,m is independent of the damage parameters governing the volumetric
damage w behavior because the last is not zero only after the leading wave is reflected from
the edge of the target. However, V.. is an essential function of the damage parameters
governing the shear damage a because of the difference of its value in the visco-elastic
and the damageable cases.

The following term from the expression for stress o-,,:

AC(1 - w)-' log(1 - a)signcx)

is the main term governing difference of the dynamics of the damageable material behavior
from that for the visco-elastic case at the first the stage of the process. The first stage
of the process is the one when the material is compressed and the wave complex moves
towards the right edge of the target. One can see that here 1 - w = 1 and the value
of log(1 - a) is almost proportional to the kinetic factor C when a << 1 and the shear
deformation exceeds the limit several times. So we can prove and then illustrate the
hypothesis: Vm = Vm(AC 2 ). Of course it is also the function of C independently on AC'
(due to non-linearity), but most of all the maximal velocity depends on this complex:

= AC'.
To illustrate this, the dependence of Vm on I), was build for different values of C

(Fig. 6.15). The values of A and Q were varied in the intervals 109 + 109 and 10- + 2.106
correspondingly. The experimental value of Vm is 620m/s [6].

It is seen that the diagram of Vm versus a, is practically independent on both C
(varied from 103 to 106) and the volumetric damage parameters Q and A. The curves for
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different kinetic factors C are close to each other, and the independence of Vm on A and
f0 is observed. The coarse logarithmic scale of the O axis on the Fig. 6.15 helps us to
estimate the order of 4a z 1015Pa/s which gives a coincidence with the experiment.

The Fig. 6.16 shows the dependence of Vm on n, and C in the vicinity of the intersection
with the experimental value of V,,. It is seen that at C = 103s-1 the best value of (%
is 1.08 • 10"Pa/s, and for C = 106s-1 the best value is O = 1.02 • 10' 5Pa/s. A small
difference between two values (plus the possible experimental error of 5+10%) brings to
the conclusion that the value of O, can be located well enough for a big variety of C
values, and could be taken as about ( = 1.05. 10' 5Pa/s for plexiglass. The kinetic factor
C independently from (b has a poor influence on the resulting Vm, and can not be located
separately.

6.3.2 The volumetric damage factors

The experimental curve of the velocity versus time has another critical point: Vn, which is
the minimal velocity of the target's edge after the wave complex reflects from it. It is also
seen well enough on the calculated curve at the Fig. 6.13. We introduce the hypothesis:
for the given value of -1, the value of V,, depends mainly on the following complex of the
volumetric damage parameters:

1) = AQ2.

It can also depend slightly on C and Q.
The Fig. 6.17 illustrates the dependence of V4, on (, for different values of C and Q2. The

value of • was chosen in accordance with the value of C in order to maintain Vm =620m/s
(with a help of the data obtained previously and illustrated on the Fig. 6.16).

The curves on the Fig. 6.17 are passing close to the experimental level of V•=480m/s
but could not be extended further to the right because of the premature breakup of the
target before the velocity on the target's edge reaches its minimum. This breakup in
calculations can be delayed a little if we increase the level of D. up to 3 . 106J/kg but the
dissipation is rising up at the breakup site very rapidly.

It can be seen from the Fig. 6.17 that the dependencies of V,, on 4)" are close to each other
for different values of C and Q2. The intersection with the experimental level Vn=480m/s
is approximately at •, = 3 . 101" Pa/s. So the results show that the complex of the
volumetric damage parameters 1, is an order of magnitude higher than the complex 1(
for the shear damage parameters. Thus the dissipation growth rate due to volumetric
damage is an order of magnitude higher (for plexiglass, in particular) than that due to
shear damage.

The Fig. 6.18 illustrates the details of V, dependence on C and Q with more fine scales
than in the Fig. 6.17 and closer to the interval we are interested in. It is seen that V,"
is practically independent of Q and there is a slight dependence on C (about 2%). The
results show that the value of 4 must be within the interval of 3.0 + 3.2 • 101'6Pa/s.

The result 4), = 3.0 • 10' 6Pa/s gives us a very important estimate for the volumetric
damage parameters set.
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6.3.3 Comparison with the shape of the experimental curve.
Considerations about the values of kinetic parameters
and the critical dissipation

The previous sections 6.2.1 and 6.2.2 where the complexes (], = AC 2 and • = AW2 were
estimated using the two main features of the experimental curve - velocities Vm, and V, -
gave us a little information about the actual values of C, Q and D,.

Here we give some considerations about the values of damage kinetic factors Q and C
comparing the shape of the experimental curve with shapes of the curves obtained by
calculations with different values of Q and C. The enthropy factors A and A for those
calculations are obtained using the estimations of 4x, and (I):

A 4" (I) c
Q2 =-C 2 .

The value of 4, was chosen within the interval [1.02 • 10"', 1.10 • 10i'] for different C in
order to maintain Vm = 620m/s (using the diagram in the Fig. 6.16). The value of ý,
was taken as 3.0. 1016.

The Fig. 6.19 illustrates the calculated curves of the target's edge velocity V(t) versus
time. The breakup moment is marked with a cross on each curve. The experimental curve
[6] is also shown. Each calculated curve is marked with the set of values Q and C used in
calculations; the other damage parameters are maintained as described above. The time
scale on the Fig. 6.19 has the origin at the initial impact.

It is seen from the Fig. 6.19 that the shape of the calculated curves is practically
independent of the volumetric kinetic factor R2. However the shear kinetic factor C has
an influence: the higher C the closer it passes to the experimental curve. However the
difference remain sufficient at C = 1.4 • 10'. But our attempts to rise the value of C
higher brought to premature breakup at the impact site which was not recorded in the
experiment [6].

As it is seen from the Fig. 6.19, the order of magnitude of the kinetic factors is de-
termined nevertheless: the sufficient change in the shape of the calculated curves begins
with C = 1.0 • 106(1/s); and the curve at C = 1.4 . 106 is passing much closer to the
experimental curve than at C = 106.

The experimental data enables us to determine the time for the spallation plate sepa-
ration. That means that by that time the dissipation function in the zone of spallation
formation reaches the critical value D..

In order to examine the possible estimation of the specific dissipation critical level D.
we processed a series of calculations with the damage parameters which give the closest
possible coincidence with the experiment [6]: 1),, = 1.00.10'5, C = 1.4.106, (I) = 3.00.1016,
0 = 106. The value of the volumetric kinetic factor Ql was taken using a consideration
that it must be of the same order as the correspondent shear factor. Each time in this
series we checked up the breakup moment and examined the location of the breakup site,
the fact whether the velocity at the edge of the target had passed its minimum before
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the breakup and the final velocity which must not differ essentially from the final velocity
obtained in the experiments.

The results are shown in the Table 6.4. Here D. is the assumed critical dissipation level
and Vf is the final velocity of the target obtained after the breakup.

D., J/kg Vf, m/s Notes on the breakup
1.0.104 0 premature breakup at the impact site
1.0.10, 577 before the velocity reaches minimum
3.0- 10' 483 before the velocity reaches minimum
1.0 _ 106 459 before the velocity reaches minimum
1.1 • 106 457 very close to the velocity minimum
1.2. 106 460 soon after the velocity reached its minimum
2.0. 106 460 soon after the velocity reached its minimum

Table 6.4. Different values of D. level affect the conditions at the breakup.

It is seen from the Table 6.4 that the most acceptable value of D. is about 1.1 +1.2 •
106J/kg. On one hand, the velocity of the target's edge had really reached and passed
its minimum in the experiment [6]. On the other hand, further increase of the critical
dissipation level contributes nothing more to the final state after the breakup. In fact,
the calculations on the model had shown that after the dissipation D reached some level
of the order of 106J/kg anywhere within the material, its irreversable growth changed to
be extremely rapid. In those circumstances any further increase of the critical level D.
does not change essentially the time moment of the breakup.
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Conclusions to chapter 6

* The detailed investigation of two plexiglass samples high-velociy collision was pro-
cessed using the pure visco-elastic model and the model with the damages growth.
The difference of results for two models was illustrated together with the influence
of different constants regulating the damages evolution (damage parameters) on the
behavior of the material.

* It was obtained that in case of high-velocity impact when the deformations in the
sample exceed the elasticity limit several times, the maximum of the velocity on the
edge of the target sample V,, depends mainly on the complex made of the shear
damage parameters I), = AC 2 where A is the shear enthropy factor and C is the
shear kinetic factor.

* When the stress waves reflect from the target's edge, its velocity decreases to zero
in the non-damageable case and to V,, > 0 in the damageable one. It was obtained
that the value of V, depends mainly on the complex combined of the volumetric
damage parameters: 4ý,, = AQ2 , where A is the volumetric enthropy factor and 0 is
the volumetric kinetic factor.

* Comparison with the experiment on the plexiglass samples high-velocity collision
helped to obtain the estimations 4), ; 1.0. 10 5Pa/s and 4 ;z 3.0. 10O6Pa/s using
the experimental values of Vm and V, respectively. The comparison of the shapes
of the calculated curves to the shape of the experimental one helped to estimate
the order of the shear damage kinetic factor C - 1.4 • 106. The estimate for the
volumetric kinetic factor was not obtained because the calculations had shown the
independence of the shape of the experimental curve on this factor. Finally, the
critical level of the specific dissipation D. was estimated to be • 1.2 • 106J/kg in
order to ensure the absence of the premature breakup (either at the impact site or
before the velocity on the target's edge reaches its minimal value V,,).
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Conclusions

The results of investigations show that the damage parameters for the laminated thermo-
viscoelastic composite materials could be developed based on the results of two types of
experiments: low and high rates of loading.
The experiments on high rates of loading (impact experiments; Chapters 5 and 6) make
it possible to evaluate: the tension and shear damage enthropy factors (A and A), the
shear damage kinetic factor (C) and the critical breakup dissipation D. with a sufficient
accuracy. While the magnitudes of the critical deformations E., e*, 4, which regulate
the accumulation of damages in tension, shear and delamination respectively, cannot
be evaluated in the impact experiments. The reason is that in high-velocity impact
experiments the critical values of deformations are exceeded several times in compression
and decompression waves travelling in the sample.
The experiments on low rates of loading (twisting and stretching of tubular samples,
Chapters 3 and 4) make it possible to evaluate the rest of parameters: critical deformations
e, e* and 4*, volumetric and delamination damage kinetic factors Q and Q,& delamination
damages enthropy factor AA, - with a sufficient accuracy, while the breakup criterion -
the critical dissipation D. - cannot be developed from low velocity loading experiments
with a necessary accuracy.
Thus the combination of the two developed methodologies: the ones for low and high
velocity loadings makes it possible to develop all the 10 damage parameters for composite
materials.
Processing the experimental results on organic glass high-velocity impact enabled to de-
velop the critical dissipation D. (the breakup criterion) and the three other damage
parameters (volumetric enthropy and shear enthropy and kinetic factors).
Analysis of the developed methodology and the first results show that the damage pa-
rameters could be determined for all the types of two-phase laminates in experiments
conducted for each type of materials; while the other material constants (shear modulus,
volumetric elastic modulus, specific heat capacity, etc.) could be determined for each
phase independently and then recalculated to obtain the value for a two-phase laminate.
The main target of the future research on improving the computational damage model
for the laminated composite materals would be the construction of a model enabling
to develop the damage parameters for all the types of two-phase composite materials
based on independent experiments with its phases. Then the damage parameters for two-
phase material should be introduced as functions of the phases concentration and phases
properties for the laminate. Such an improvement of the model will make it possible to
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determine once the damage characteristics for phases of the laminate, and then to evaluate
the damage parameters for different types of laminates composed of those phases.
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